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Abstract

The purpose of these experiments was to estimate basic sensitivity to
motion gradients, and to evaluate the evidence for second-order
integration and differentiation of motion signals. We measured sensitivity
to spatially sinusoidal contrast modulation between two oppositely-moving
bandpass-filtered noise images. The motion-contrast sensitivity function,
defined as the inverse of threshold modulation amplitude as a function of
modulation spatial frequency, was band-pass in shape with declines at
both highest and lowest frequencies. The functions for three noise spatial
frequencies were approximately the same shape when modulation
frequency was expressed as a fraction of the noise frequency. We
compared the data to a model in which linear motion filters, whose outputs
are squared or rectified, are followed by a second stage of excitatory
and/or inhibitory pooling. The data are consistent with a model in which 1)
all excitatory pooling occurs at the linear stage, and 2) the second stage
contains a large inhibitory pooling area, with a radius about 8 times that of
the linear receptive field.
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Introduction

There now exists a plausible and rigorous model for the sensing of
motion at the earliest levels of the human visual system. This filter model
consists of linear, direction selective filters that are tuned for spatial
frequency 1, 2. In one variant, the outputs of two such filters in quadrature
phase are squared and added to compute a "motion energy"3, 4. In another
variant, the  energies for opposite directions are subtracted, to form an
opponent motion signal5, 6. The linear filter in each of these models has a
corresponding receptive field, with a size that is related to the filter spatial
bandwidth. As in other "multiple channel" models, the receptive fields are
thought to come in a range of sizes, with a corresponding range of spatial
frequency optima. It is assumed that these receptive fields cover the
visual field, yielding for each size an array of responses distributed over
space and time.

While this model can account for many aspects of the detection of
motion and the sensing of direction of motion 7, 8, 9, 10, 11, 12, 13, it does not
deal directly with the sensing of spatial motion gradients. Sensitivity to
motion gradients is of interest for many reasons. First, they represent the
next higher order elaboration of the motion field beyond a simple uniform
translation, and are a ubiquitous component of our visual experience.
Second, motion gradients and discontinuities are important cues in defining
the boundaries of objects in motion. Third, motion gradients are
fundamental for sensing three-dimensional self-motion as well as the
three-dimensional motion and depth of objects and surfaces 14, 15, 16, 17.
These important roles make the study of motion gradients of interest in its
own right, but they also suggest that there might exist special mechanisms
for detection and estimation of spatial motion gradients.

By analogy to the processing of luminance, we might expect such
mechanisms to employ basic operations such as spatial integration and
differentiation of the outputs of the first order filters. And also by analogy
to luminance, the nature of these operations might be revealed by
measurement of a motion-contrast sensitivity function. Consider an
abstract stimulus as depicted in Fig. 1.
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Figure 1. A generic motion-contrast grating consisting of alternating
strips moving with different velocities v1  and v2. The
modulator shown on the right controls the velocity at each
point in the stimulus.

It shows an image divided into alternating stripes of two particular
velocities. The velocities are carried by some spatial contrast pattern,
perhaps noise, which we will call the carrier. At each point in space, the
velocity of the carrier is defined by a modulator, the function depicted to
the right of the image. If there is a mechanism that pools filter outputs
over a large area, then it will become insensitive as the stripes become
narrow, because it will receive equal input from both velocities. Thus the
decline in sensitivity with increasing modulator frequency is a measure of
the pooling or integrating behavior of higher-level mechanisms. This is a
close analog to the use of luminance contrast sensitivity functions to define
the size of luminance-contrast receptive fields. For this reason, we call such
generic functions motion-contrast sensitivity functions. To pursue the
analogy further, if the higher-level mechanism spatially differentiates the
outputs of first order filters, we would expect sensitivity to decline at the
broadest stripe widths (lowest modulating frequencies).

An early use of a periodic motion-contrast stimulus was that of van
Doorn and Koenderink 18. They used alternating stripes of spatial white
noise moving with respective velocities v1 and v2  , veiled by some amount
of uncorrelated dynamic white noise. When v1 and v2  were opposite to
each other and orthogonal to the border (compression), sensitivity declined
systematically at higher modulating frequencies, typically falling from its
peak by a factor of four at around 3 cycles/deg.

The van Doorn and Koenderink stimulus may be thought of as one in
which there are two noise images, with velocities v1 and v2 , whose
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contrasts are determined by the modulator. An alternative approach taken
by Nakayama and Tyler19 is to use a modulator that determines the
velocity of individual random dots. Using a sinusoidal modulator, they
measured modulation amplitude detection thresholds for motion parallel to
the border (shear) at various modulation frequencies. Here also, sensitivity
declined with increasing modulation frequency, again falling from its peak
by a factor of four at about 3 cycles/deg. Later experiments with
compressive motion showed a much slower decline20, a point to which we
will return in the discussion.

While quite different in detail, both these experiments may tell us
something about pooling of motion signals. In particular, both appear to
suggest pooling over an area of roughly 1/3 degree. But how can we tell
whether this is pooling at a higher level, or pooling within the linear early
filter mechanisms? Fig. 2 illustrates two possible sites of spatial pooling.
Early linear mechanisms, with some spatial extent, feed a later stage of
nonlinear pooling, with a larger extent. The later pooling must be
nonlinear, or it could not be distinguished from the early linear pooling,
and must be of larger extent, since it incorporates the pooling from the
earlier level.

Σ |ri|2

Linear extent

Non-linear extent

Linear units

Non-linear unit

r1 r2 rn

Figure 2. Two types of pooling of motion signals. Early linear units pool
over a small extent, later non-linear units pool over a larger
extent.

The experiments described above cannot distinguish between these
two types of pooling. The theory of early linear filters assumes a bank of
filters differing in preferred spatial frequency, and with receptive field
sizes inversely proportional to frequency. Because the previous
experiments used broadband white noise or random dots, they stimulated
the full range of frequency-tuned mechanisms, and hence we cannot say
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which linear mechanism, with which receptive field size, was responsible
for the psychophysical judgment. Here we propose a method that will
allow us to select which spatially tuned filter is operative. This will allow
us to compare the spatial extent of pooling inferred from motion-contrast
sensitivity measurements to the spatial extent of the putative linear filter.
This in turn will reveal the extent of any subsequent non-linear pooling.

The key to our technique is the use of bandpass filtered spatial noise
as the carrier. By setting the peak frequency of this noise to a particular
value, we target a particular size of motion filter. The first step in the
creation of our stimuli is to generate two such bandpass noise images,
which we will call c1 and c2. The second step is to set both images in
motion, with respective velocities v1  and v2. In all of the experiments
reported here the two noise fields move with equal speed in opposite
directions, (v2=-v1.). The third step is to create a pair of modulators, m1
and m2. These are one-dimensional functions that will multiply the
contrasts of c1  and c2, respectively, along their vertical dimensions.  It is
important to note that while the noise fields c1  and c2  move, the
modulators m1 and m2  are stationary (with occasional noted exceptions).
Figure 3A shows examples of sinusoidal modulators at motion-contrasts of
1 and 0.5. The sinusoidal modulator has the virtue that, unlike the square
wave used by Koenderink and van Doorn, it will not distort the spatial
frequency of the noise pattern until relatively high modulation frequencies
are reached. After multiplication by the modulator, c1  and c2  are added
together, their sum is multiplied by a Gaussian temporal window w t( ) to
ensure gradual onset and offset, and the resulting contrast image itself
modulates the luminance of the display. The typical appearance at high
motion-contrast is of alternating horizontal stripes of oppositely moving
spatial noise. At zero motion-contrast, one sees either a form of dynamic
spatial noise, or perhaps transparent sliding of two otherwise unstructured
superimposed noise images. The task of the observer is to distinguish
between a stimulus with zero motion-contrast and one with non-zero
motion-contrast.
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A                                                                    B

Figure 3. Modulating functions m1 (solid lines) and m2 (dashed lines).
Motion-contrasts of 1 and 0.5 are shown. Modulation frequency
is 2 cycles/image. A) constant peak contrast; B) constant
variance.

These two modulators in Fig. 3A are designed to keep the peak
luminance contrast constant (m1 + m2 = 1) everywhere in the image,
regardless of the motion-contrast. This is intended to force the observer to
use motion gradients, rather than gradients in the luminance contrast,
which are zero everywhere. However, if we recall that each pixel in c1 and
c2  is drawn from a probability distribution with some variance 2σ , then we
realize that a pixel in the composite, with a value 1m 1c + 2m 2c , will have a
variance 2σ 1

2m + 2
2m( ). If perceived contrast depends more nearly upon local

contrast variance than upon local peak contrast, then the modulators in 3A
will produce perceptible stripes in static frames of the stimulus. In fact,
such stripes are visible. For this reason, we used the modulators shown in
Fig. 3B, which are simply the square roots of those shown in 3A. It is
evident that these will keep the local contrast variance constant, and
indeed no stripes were visible in individual static frames of the stimuli.
Note that when the motion-contrast is below about 0.5, sine and square
root of sine are quite similar, so for most purposes the modulators may be
thought of as sinusoidal, and we will describe them as such below.

Stimuli constructed with the modulators in Fig. 3 have four
parameters of particular interest: the carrier frequency fc, equal to the
peak radial spatial frequency of the isotropic bandpass filtered noise; v1 ,
the velocity of one noise image (the other was always v2=-v1); the
modulation frequency, fm; and the modulation amplitude, or motion-
contrast m. Note that the modulators were always vertical (horizontal
stripes). As noted above, the task of the observer is to distinguish between
zero and non-zero motion-contrast stimuli. With all other parameters fixed,
measuring such thresholds as a function of the modulation frequency will
define a motion-contrast sensitivity function. In the following experiments,

6



we collected such functions for a range of velocities and carrier
frequencies.
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Stimuli

To create samples of isotropic spatial noise with a particular radial
spatial frequency bandwidth we defined a "Gaussian ring" filter, given by
the convolution in the frequency domain of a Gaussian of a particular
spatial scale and a ring impulse function of a certain diameter. In the space
domain, the kernel of this filter is the product of a Gaussian and a Bessel
function:

g x( ) = J0 2π f c x[ ] exp −π x / s( )2[ ] (1)

where x (spatial coordinate), and s (scale) are in degrees, and fc is in
cycles/degree. We used a scale sufficient to yield a one-dimensional half-
amplitude full bandwidth of one octave, as given by the formula

s = fc
−1 2b +1

2b −1
Log 2( ) / π (2)

where b  is the bandwidth in octaves. We used a value of b  =1 octave.

A Discrete Fourier Transform (DFT) of the kernel was used to filter
the noise samples. The noise samples were drawn from a uniform
distribution with a range of {-1,1}.

The overall luminance contrast of the stimuli was controlled by a
Gaussian temporal window:

w t( ) = c gexp −π t / d( )2( ) (3)

where c  is the peak luminance contrast of the stimulus, and g is a
constant equal to the inverse of half the largest magnitude in either of the
noise images. Unless otherwise noted, the time scale was d= 267 msec (16
frames). The complete stimulus was 533 msec (32 frames).

The spatial modulation of motion was accomplished by a pair of
modulating functions:

m1 y( ) =
1

2
1 + msin 2π mf y( )[ ]   

   

1/2

(4)

m2 y( ) =
1

2
1 − msin 2π mf y( )[ ]   

   

1/2

= 1− m1
2 y( ){ }1/2

(5)
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where fm is the modulation frequency in cycles/deg, m is the
motion-contrast in the range {0,1}, and y  is vertical position within the
image in degrees. For the special case of fm =0, the sine was replaced with
a constant value of 1. If we write c1 and c2  for the two noise images, then
the complete stimulus can be written

L x,t( ) = 0L 1+ wt t( ) m1 y( )c1 x − tv( ) + m2 y( )c2 x + tv( )[ ]{ } (6)

where L0   is the mean luminance, v is the velocity of image motion,
and where the noise images wrap-around (the coordinates in x are
interpreted modulo the height and width of the image).

Two successive frames from one stimulus are presented as a stereo
pair in Fig. 4. For those able to free-fuse, this should appear as a sinusoidal
corrugation in depth.

Figure 4. Two successive frames from a stimulus sequence. The
modulation frequency fm was 2 cycles/image, and the motion
was horizontal (shear) at  v1   =1 pixel/frame. The carrier
frequency fc was 32 cycles/image, the image width is 128
pixels.

To preserve the spectral purity of the stimuli, the modulator
frequency must be appreciably lower than the carrier frequency. With our
one octave spatial bandwidth, the distortion products (at fc -fm and fc +fm )
are negligible provided that fm /fc  < 1 /2, which we ensured.
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The stimuli were computed in advance as brief movies of 16 frames
duration with each frame 1282 pixels in size. Each frame could be
displayed a number of times (dt) on our 60 Hz display. For most of our
data, we used dt=2 (30 Hz). This update rate was selected as the best
compromise between memory requirements and temporal aliasing. With
the spatial and temporal parameters used, little temporal aliasing was
expected or observed.

The stimuli were stored in the image memory of a PIXAR II display
system. The 10 bit color look-up tables were used to linearize the display21

(software effectively reduced the size of the look-up table to 512 entries).
The stimuli subtended 4 degrees in the center of an otherwise dark screen,
and were viewed binocularly with natural pupils from a distance of 48.6
cm (display resolution was 37.6 pixels/cm). Between trials the screen was
kept at the mean luminance of 40 cd/m2. A small dark central fixation
point was present at all times.

Procedures

Each 2AFC trial consisted of two temporal intervals each containing a
stimulus presentation; in one, the motion-contrast was 0, in the other it
was non-zero. We call these null and signal, respectively. The observer
attempted to select the interval containing the signal. A QUEST staircase 22

of 64 trials, and subsequent fitting by a Weibull function 23 were used to
find the motion-contrast yielding 82% correct. Sensitivity is defined as the
inverse of this motion-contrast threshold. Typically three replications were
obtained for each threshold. Two observers (the authors) took part. The
direction of motion was reversed on a random half of the trials. This means
that for a compression stimulus at a given border (antinode of the
modulator) the two noise fields might be moving toward (occlusion) or
away (dis-occlusion) from each other. The modulators were always
arranged to be in sine phase (at an antinode) at the center of the display,
and the observers were aware of this.

Results

Preliminary data at a luminance contrast of 1.0 showed erratic
performance. Eventually this was attributed to the generation of strong
motion aftereffects localized to the stripes in the motion-contrast stimulus.
This lead to the appearance of "signal" in both signal and blank intervals.
To reduce this problem, the remaining data were collected with the carrier
at 8 times its detection threshold. For this purpose, we began by collecting
luminance contrast thresholds.
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Luminance Contrast Thresholds

Luminance contrast detection thresholds were collected with a 2AFC
QUEST staircase. The observer selected between a blank (zero luminance
contrast) and a stimulus with zero motion-contrast but non-zero luminance
contrast. Results are shown in Fig. 5.

1.61.41.21.00.80.60.40.2
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
v 4 1

h 4 1

v 2 1

h 2 1

v 4 2

h 4 2

v 4 4

Carrier Frequency (log cycles/deg)

L
o

g
 C

o
n

tr
as

t 
S

en
si

ti
v

it
y

1.21.00.80.60.40.2
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A B W MPE

Figure 5. Luminance contrast sensitivity for noise carriers. Motion was
horizontal (filled symbols) or vertical (open symbols). Viewing
distance was  48.6 or 97.2 cm, resulting in image sizes of 4
(large symbols) or 2 deg (small symbols). Update interval (dt)
was 1, 2, or 4 frames, resulting in speeds of 1.875 (circles),
0.938 (squares), and 0.469 deg/sec (triangles). The legend
notation is (direction size dt).

Detection thresholds were collected at two viewing distances (48.6
and 97.2 cm), with consequent image sizes of 4 and 2 deg. The number of
times each movie frame was exposed (dt) was 1, 2, or 4. Combined with a
fixed image displacement of 1 pixel/frame, this resulted in image velocities
of 1.88, 0.94, and 0.47 deg/sec, and window time constants of 133, 267,
and 533 msec, respectively. The data show the typical effect of spatial
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frequency upon sensitivity. Other effects, of image size, velocity, and
duration, are more modest.

Motion-contrast Thresholds

Most of our motion-contrast thresholds were collected at |v1| = 0.94
deg/sec (dt=2), with v2=-v1. The modulator was always vertical (horizontal
stripes), and motion was either vertical (compression) or horizontal
(shear). Image size was usually 4 deg (viewing distance = 48.6 cm). Carrier
frequency was 2, 4, or 8 cycles/deg. For each carrier, luminance contrast
was set to eight times the detection threshold.
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Figure 6 Motion-contrast sensitivity functions for compression and
shear for observer ABW. The number near each curve indicates
the carrier frequency. Data for fm =0 are plotted at -0.9. Error
bars are ± SE.
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Figure 7 Motion-contrast sensitivity functions for compression and
shear for observer MPE. Other details as in Fig. 6.

Figures 6 and 7 show motion-contrast sensitivity functions for
compression and shear for both observers. In these and succeeding figures,
the data for fm =0 are plotted at -0.9. The peak sensitivities are rather low,
never greater than 10. For each carrier frequency, the data show a decline
in sensitivity at the higher modulation frequencies. The location of this
decline depends strongly upon the carrier frequency.
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Figure 8. Motion-contrast sensitivity averaged over the two observers.
The legend indicates shear (open symbols) or compression
(filled symbols) and the carrier frequency.

Since Figs. 6 and 7 show little systematic difference between
observers, in Fig. 8 we plot both shear and compression, averaged across
observers, to allow easier comparison. Neither is there much systematic
difference between shear and compression, except an overall deficit for
compression relative to shear at the lowest carrier frequency.

The dependence upon carrier frequency suggests that performance
may be "scale invariant", in the sense that the fall-off in sensitivity occurs
at a fixed ratio of fm /fc . This is confirmed graphically in Fig. 9 which
shows the data in Fig. 8, averaged over shear and compression. The data
for carrier frequencies of 2 and 4 cycles/deg have been shifted vertically
by a small amounts (0.2  and 0.11 respectively), and horizontally by
appropriate factors of two so that the horizontal axis may now be labeled
fm /fc  (the data at fm =0, plotted at -1.8, are of course not shifted). The
agreement among the shifted curves, particularly at the higher
frequencies, suggests that the second order pooling area, whatever its
precise dimensions, is a fixed multiple of the first order linear pooling area.
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Figure 9. Average motion-contrast sensitivity functions shifted to
illustrate scale-invariance. Error bars are ± 1 SE.

The need for vertical shifts is a departure from strict scale
invariance, except that the image was of constant size, rather than a fixed
number of cycles of the carrier frequency, as would be required to test
strict scale invariance. We conjecture that enlarging appropriately the size
of the lower carrier frequencies would remove the need for vertical shifts.

Model

To assess the relative contributions of first and second-stage pooling
we have developed a model of motion-contrast detection. An outline of the
model is shown in Fig. 10.

up

down

- template
matchpool

• or • 2

• or • 2

Figure 10. Schematic of the motion-contrast detection model.

The first stage of the model consists of linear direction selective
filters for upward and downward motion1, 2. The spatial filter employed
was a Gaussian in frequency centered at the carrier frequency fc , with an
orientation matched to that of carrier motion, and with a bandwidth of 1.4
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octaves. The temporal filter employed was a difference of Gamma
functions with parameters of n1 =9, n2 =10, t =0.005 sec, k  =1.33, z =1.0, in
the notation of Watson (1986)24 . These parameters are roughly
appropriate for human temporal contrast sensitivity at the experimental
mean luminance.

The inputs to the model are actual sequences of digital images,
identical to the actual stimuli except that they are one quarter the size
(642 pixels) and that the noise samples are different. The output of the
first stage is two sequences, one for up and one for down. The motion
filters we use incorporate both "even" and "odd" phases, and the complex
output contains both phase responses as real and imaginary parts. The
second stage of the model is a rectifying and "demodulating" nonlinearity.
Regarding even and odd filter responses as real and imaginary parts of a
complex number, we compute either the magnitude of this number or the
magnitude squared. These correspond to "magnitude" and "energy"
measures, respectively, and both remove the phase-dependence of the
filter response 3, 7. Such operations have been widely conjectured to occur
at this stage in the motion pathway, and they correspond roughly with the
behavior of many complex cells in primate visual cortex 4, 25. The output of
this stage is a pair of image sequences for up and down, respectively.

The next stage subtracts the responses for the two opposite
directions. When the squared magnitude (energy) is used, this corresponds
to the final opponent stage in the models of van Santen and Sperling6 and
Adelson and Bergen 3. The output is now a single image sequence.

At the next stage, the opponent signal is pooled spatially over a
Gaussian shaped area. The radius of this Gaussian is the parameter of the
model that controls the amount of second-stage pooling. Since we assume
that an array of pooling units cover the stimulus, this pooling is
implemented as a convolution with a Gaussian. The output is again an
image sequence; it is, in fact, a Gaussian blurred version of the output at
the previous stage. It is convenient to express the radius of the pooling
Gaussian in units of the radius of the first-order linear receptive field. We
call these "receptive field units" (rfu).

At the final stage we assume a simple template-matching detection
process. Our template is a spatial sinusoid of the modulation frequency,
approximately equal to the spatial modulator, multiplied by a temporal
Gaussian equal to the stimulus time window. This template multiplies the
opponent output and the result is integrated over space and time.
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Considering the integral operations involved in pooling and matching,
it is evident that by changing the order of integration we can, as a matter
of implementation only, move the multiplication by the time window and
time integration before the spatial pooling and matching, yielding great
computational savings.

Multiplying by the time window and integrating the opponent signal
over time yields a single image like that in Fig. 11A, in which positive
values indicate upward local motion and negative (dark) values,
downward. The result of the spatial pooling operation (with a Gaussian
radius of 3.84 rfu) is shown in Fig 11B.

A                                                             B

  

Figure 11. Output of the model after temporal matching and integration.
A) before spatial pooling, B) after spatial pooling with radius=
3.84 rfu. The input was fc = 16 cycles/image, fm = 2
cycles/image, m=1. Image is 15.3 rfu wide.

Since the spatial template is one-dimensional, spatial matching is
implemented by first integrating the image (eg Fig. 11B) over x  and then
matching the 1D template. Figure 12 shows an example 1D outputs after
pooling with radii of 0.24 rfu (essentially no pooling) and 3.84 rfu.
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Figure 12 Opponent response (Fig. 11A) integrated over horizontal
position after pooling by a Gaussian with a radius of 0.24 rfu
(line) and 3.84 rfu (dots).

The 1D pooled opponent response (Fig 12) is then multiplied by the
1D template and integrated. This quantity is computed for both a null
stimulus, in which m=0, and the signal stimulus, in which m=0.45. Tests
confirmed that the essentials of model performance do not depend much
upon the particular value of motion-contrast used. The responses to null
and signal were subtracted, and this quantity was assumed to be
proportional to sensitivity. Since we are not attempting to predict absolute
sensitivity, initially we normalized the results at fm =0 for all pooling radii.
Although the simulations were computed for one particular carrier
frequency, we plot the results with respect to fm /fc , in keeping with the
previous observations regarding scale-invariance. Model predictions are
shown in Fig. 13. As in the previous figures, results for fm =0 are plotted at
-1.8. Comparable simulations for the magnitude model and for shear
stimuli were very similar.
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Figure 13. Model predictions for pooling radii of 0.24, 0.48, 0.96, 1.92,
3.84 rfu (from top to bottom). These are energy predictions for
a compression stimulus.

At this point the model contains only positive values in the pooling
receptive field, hence it produces a strictly lowpass motion-contrast
sensitivity function. We do not therefore attempt to simulate the human
performance below log(fm /fc )=-0.9, and we select the upper portion of
each curve in Fig. 13 and shift it vertically to match human sensitivity at
this frequency, as shown in Fig 14.

Figure 14. Average data compared to model predictions for pooling radii
of 0.24, 0.48, 0.96, 1.92 and 3.84 rfu.
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The data are consistent only with the smallest pooling radii, of one
half to one quarter the radius of the linear receptive field. The curve at
0.24 rfu is essentially that obtained with no second-order pooling. We
conclude that the data show no evidence for any significant second order
pooling.

Square-Wave Experiments

Motion borders frequently occur in the natural world as a result of
occlusion or dis-occlusion of one surface moving in front of another. The
borders are characterized by a relatively sharp discontinuity, rather than
the sinusoidal gradient we have used here. To determine the generality of
our results, and to ascertain whether sharp motion borders are detected
with special sensitivity, we repeated our compression condition at a carrier
of 8 cycles/deg with square, rather than sine wave modulators. Results are
shown in Fig. 15, along with data shown previously for sine waves.
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Figure 15. Motion-contrast sensitivity for square-wave and sine-wave
modulators.

It is evident that the sensitivity for square waves is higher, but not
markedly so. Borrowing an idea from sensitivity to luminance patterns, we
may ask whether in fact this slight improvement in sensitivity is
consistent with a linear analysis of modulation sensitivity. This would
suggest that the square wave should be about 4/π  (~0.1 log unit) greater,
since that is the amplitude of its fundamental component 26, and this is
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very close to the actual difference. This is consistent with the view that
sharp motion borders have no special status, and that our sinusoidal data
capture the properties of whatever mechanisms detect these square
waves.

Moving and stationary modulators

Another feature of natural motion borders, in contrast to our
stimulus, is that the border often moves with its associated object. In our
context, this means that the modulator should move with one of the carrier
noise fields. To test whether moving modulators were seen with
heightened sensitivity we repeated some of our measurements with a
square-wave modulator which moved at the same velocity as one of the
noise fields. The data are shown in Fig. 16. Rather than enhancing
sensitivity, moving the modulator reduces sensitivity substantially at all
but the lowest frequencies. This is consistent with the idea of a motion
edge detector which is stationary on the visual field (as in the model
described below), but is inconsistent with a mechanism tuned to the
natural correspondence of velocities of carrier and modulator.
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Figure 16. Motion-contrast sensitivity for moving and stationary square-
wave modulators.

23



Inhibitory Pooling

The average data in Figs. 9 and 14 show clear evidence of a decline
in sensitivity at low modulation frequencies. Such a decline is consistent
with inhibitory pooling, as occurs in the opponent surround of a center-
surround luminance receptive field. This sort of higher order motion
mechanism, with the center tuned to one direction and an opponent
surround tuned to the opposite direction, would be useful in detecting
motion discontinuities since it would not respond well to uniform
translation. Such units are also found in the visual motion areas of
pigeons27  and primates28, 29 , are used in some recent algorithms for
estimation of three-dimensional motion estimation 30, and have been
conjectured in models of human 3D motion perception 31.

Our model is easily modified to include inhibitory pooling. For the
pooling Gaussian, we substitute a difference-of-Gaussians. Keeping the
center Gaussian fixed at its smallest value (0.24 rfu), we varied the width
and amplitude of the inhibitory Gaussian. The results of the best fitting
parameters are shown in Fig. 17, along with the predictions that result
when no inhibition is employed (dashed line).

Figure 17. Model predictions for an inhibitory surround in the second
order pooling mechanism. The dashed line shows simulations
without inhibition.
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The predictions have been shifted vertically to agree with the data at
log(fm/fc)=-0.9. Along with the predictions, we have again reproduced the
average data for fc=4 and 8 cycles/deg. The best prediction is for an
inhibitory radius of 7.7 rfu and an inhibitory amplitude of 0.8. This
amplitude corresponds to the ratio of volumes of the excitatory and
inhibitory Gaussians. Figure 18 provides a picture of the relative size and
shape of the first-order linear receptive field and the second order pooling
unit. Note that the center of the latter is essentially an impulse, so that
there is in effect only inhibitory pooling at the second stage. In the
following section we discuss a possible physiological basis for this
inhibitory pooling.

Figure 18. Comparative widths of first-order linear receptive field and
inhibitory second-order surround. Curve heights are arbitrary.
Horizontal scale is in "receptive field units" (rfu).

Discussion

The purpose of these experiments was to estimate basic sensitivity to
motion gradients, and to evaluate the evidence for second-order
integration and differentiation of motion signals. On the first question, we
found that peak sensitivity was around 0.75 log units (a threshold
modulation amplitude of about 18%), for a luminance contrast of eight
times threshold. The shape of the motion-contrast sensitivity function is
approximately constant when plotted against the ratio of modulator
frequency and carrier frequency, indicating that the mechanisms involved
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are scale-invariant. Our model displays this sort of scale-invariance for two
reasons: 1) the high frequency decline scales because it is due to the first-
order filters which themselves scale with the carrier frequency, and 2) the
low-frequency decline scales because the radius of inhibitory pooling is
assumed to be a constant multiple of the linear receptive field radius.

On the second question, we find no evidence in our data for
excitatory spatial pooling beyond the level of the early linear motion
filters. It is important to note that this does not mean that such pooling
does not occur, only that it does not occur in the pathway used in this task.
However, this does create problems for theories of the motion sense which
suppose a single serial pathway from V1 to MT and beyond, since neurons
in MT are generally reported to have excitatory receptive fields perhaps
ten times the diameter of V1 receptive fields from the same visual field
location32.

Another set of experiments that have argued for the existence of
spatial pooling of motion estimates are those of Williams and Sekuler 33.
They reported that observers perceived “global coherent motion” from
fields of random dots whose individual motions were defined statistically.
They argued that this required integration over space of many local
motions. In a more recent paper, Watamaniuk and Sekuler34 show that
such integration can occur over areas as large as 63 deg2. However, it is
important to note that while observers may report "coherent unidirectional
flow", there is no difficulty in seeing in such stimuli a profusion of local
motions in many directions. Furthermore, in the latter experiments, the
task was to discriminate the mean direction of the random dots, not to
detect incoherence. Thus while they may have demonstrated a mechanism
that pools motion signals over large areas, it is clear that other mechanisms
exist which preserve motion information on finer scales. Furthermore,
since we do not know the effective scale or spatial frequency of their
stimulus, their results may be due to integration within large first order
linear receptive fields.

We find little difference between shear and compression, particularly
at the highest carrier frequency, which we consider our "best" data. This is
consistent with our model in which 1) the envelope of the linear receptive
fields is circularly symmetric, and 2) the inhibitory pooling Gaussian is
circularity symmetric. In this sense, it suggests a general radial symmetry
of the motion mechanisms at both first and second levels. It is at variance
with the results of Nakayama et al.20 who found compression to be more
visible than shear, and with the results of van Doorn and Koenderink18,
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who found the opposite. There were, however, considerable differences in
methods among these three experiments.

We do, however, find evidence for inhibitory pooling. This intriguing
result is suggestive of "motion edge detectors" or spatially opponent
motion receptive fields. We have incorporated them into our model by
supposing a second stage receptive field consisting of an excitatory impulse
and a concentric inhibitory Gaussian. We call this a DIG (Difference of
Impulse and Gaussian) receptive field. These inhibitory effects were larger
for one observer (MPE) than the other (see Fig.s 6 and 7), and were not
always evident. We hope to explore further the conditions that promote or
inhibit these effects.

There is an intriguing correspondence between our inhibitory pooling
areas and the inhibitory surrounds discovered by Allman, Miezen and
McGuinness28 in the owl monkey. For about 3/4 of their cells, motion in
the receptive field surround was inhibitory. For about 60% of these cells
the inhibition was tuned to the preferred direction of the cell, as in the
model proposed here. The size of the inhibitory region was estimated to be
about 7 to 10 times the size of the excitatory receptive field, essentially
the same as the figure of about 7.7 estimated here. The maximum
magnitude of suppression, as deduced by eye from their figures 6, 10, and
14, was about 80%, again essentially the same as the inhibitory amplitude
of 0.8 estimated here. However, a big difference between our model and
these physiological results is the size of the excitatory receptive field. We
estimate excitatory diameters that are several wavelengths of the carrier
frequency employed, for example about 1/4 degree for a carrier of 8
cycles/deg. Allman et al. in contrast report excitatory diameters of 5 deg
and larger, reflecting a discrepancy in scale of a factor of about 20 in this
example. This discrepancy could be resolved by assuming that Allman et
al. were recording from very large (low frequency) neurons, while we,
through our choice of carrier, tap into much smaller (higher frequency)
cells.
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Notation

b spatial bandwidth of noise filter in octaves
c1 carrier 1
c2 carrier 2
d scale of temporal window
fc carrier frequency
fm modulation frequency
m motion-contrast
m1 modulator 1
m2 modulator  2
n1 motion filter parameter
n2 motion filter parameter
s spatial scale of noise filter
v velocity
v1 velocity of carrier 2
v2 velocity of carrier 1
w t( ) temporal window
x spatial coordinate
t motion filter parameter
k motion filter parameter
z motion filter parameter
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